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Measurement of the quantum 
states of squeezed light 
G. Breitenbach, S. Schiller & J. Mlynek 
Fakultat fur Physik, Universitat Konstanz, D-78457 Konstanz, Germany 

A state of a quantum-mechanical system is completely described by a density matrix or a phase-space distribution 
such as the Wigner function. The complete family of squeezed states of light (states that have less uncertainty in one 
observable than does the vacuum state) have been generated using an optical parametric amplifier, and their density 
matrices and Wigner functions have been reconstructed from measurements of the quantum statistics of their electric 
fields. 

A central theme in many fields of quantum physics is the develop­
ment and application of theoretical and experimental tools for 
obtaining information about the states of quantum fields of matter 
and radiation. Although the state of an individual particle or system 
is unobservable, it is possible to determine the state of an ensemble 
of identically prepared systems by performing a large number of 
measurements1• Notable experimental succcess has recently been 
achieved in generating and determining states of various quantum­
mechanical systems, employing newly developed methods of quan­
tum state reconstruction (QSR) 2- 9 • A single mode of light10- 14, 
vibrational modes of a diatomic molecule15 and of an ion in a 
Paul trap 16, and the motional state of freely propagating atoms 17 

have been characterized completely by determining their density 
matrix or, equivalently, their Wigner functions, a quantum­
mechanical analogue of the classical phase-space distribution 18• 

A single spatial monochromatic mode of light represents a 
harmonic oscillator system for which non-classical states can be 
generated very efficiently using the interaction of laser light with 
nonlinear optical media. Squeezed states19, first generated about ten 
years ago20•21 , have a reduced uncertainty in a specific quadrature 
(for example the amplitude quadrature) compared to that of the 
vacuum state. They have typically been characterized by measuring 
the variances of the electric field with a homodyne detector. A 
complete investigation of their quantum features, in particular their 
photon statistics ( which at present cannot be measured directly 
owing to technical limitations of available photon counters) has 
only become possible through the recent development of theoretical 
tools for QSR. First experimental investigations analysed coherent 
and squeezed vacuum states10•11•13•14• Here we present a study of all 
types of squeezed states of light; squeezed vacuum, amplitude­
squeezed states, phase-squeezed states and states squeezed in an 
arbitrary quadrature. For each of these states we construct 'portraits' 
in terms of both the Wigner functions (which are two-dimensional 
maps in appropriate phase-space coordinates) and the density 
matrices. These portraits contain all that one can know about the 
quantum-mechanical properties of the squeezed optical states. 

Optical homodyne tomography 
How is the quantum state of an optical wave determined? The 
measurements to be performed on the state are measurements 
of the electric field operator E(0) rx X 8 = X cos 0 + Y sin 0 at all 
phase angles 0. Here X =(a+ at)/V2,, Y = (a - a')!Vli are 
the non-commuting quadrature operators of the electric field, with 
a and at being the annihilation and creation operators. X and Y are 
analogous to position and momentum operators of a particle in a 
harmonic potential. To access experimentally the electric field, 
which oscillates with a frequency of w/21r of hundreds of THz, a 
balanced homodyne detector22 is employed (see Fig. 1). In this 
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detector, the signal wave is spatially overlapped at a beamsplitter 
with a local-oscillator wave of the same frequency. The two fields 
emerging from the beamsplitter are proportional to the sum and the 
difference of the signal and local-oscillator fields. By detecting the 
difference of their fluxes, the natural oscillation of the signal state 
under investigation is converted to a low-frequency electrical signal 
i_, which measures Xe, where 0 is the relative phase between signal 
and local oscillator. A large number of measurements of the 
observable Xe yields the probability distribution Pe(Xe) of its 
eigenvalues Xe- This procedure is repeated for a set of different 
phase angles 0 E [O, 1r]. 

The relation between the measured distributions and the density 
operator p is P8(x8) = (x I if(0)pU(0) Ix), where U(0) = 
exp( - i0at a) performs a rotation in phase space. As the optical 
state evolves freely with w, U is equivalent to the time evolution 
operator with 0 = wt+ constant, and the 0-dependence of Pe is 
equivalent to the time dependence of the position probability 
density of the state (that is, of 1,1,(x, t)l 2, if p = 1,1,)(,l,I is a pure 
state). Thus, homodyne detection maps out the time evolution of a 
harmonic oscillator state. Our measurements (shown below) may 
be regarded as an implementation of the oldest example of quantum 
dynamics, the motion of a wavepacket in a harmonic potential 
studied by Schrodinger in 192623 • 
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Figure 1 Experimental scheme for generating bright squeezed light and 

squeezed vacuum with an optical parametric oscillator (OPA). The electric field 

quadratures are measured in the homodyne detector while scanning the phase 8. 

A computer performs the statistical analysis of the photocurrent /0 and recon­

structs the quantum states. EOM, electro-optic modulator; DM, dichroic mirror; 

SHG, second harmonic generator; HR, high reflector. 
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Of the various methods that have been proposed to reconstruct 
the quantum state numerically from the set of measured distribu­
tions P9, two are employed here. The first method makes use of the 
fact that the distributions Ph41) are the marginals of the Wigner 
function W(x, y) in rotated coordinates; 

Po(xo) = r oo W(xo cos8- Yo sin8,xosin8 + YoCOS8)dyo (1) 

where y0 = - xsin8 + ycos8. Therefore W(x, y) can be obtained 
from the set P9 by back-projection via the inverse Radon transform2• 

The second method furnishes the elements of the density matrix in 
the Fock basis via integration of the distributions P9 over a set of 
pattern functions3A. In contrast to the inverse Radon transform, this 
procedure does not involve any filtering of the experimental data 
and also allows an estimation of the propagation of statistical errors. 

The experiment 
The experimental set-up is shown in Fig. 1. Central to the experi­
ment is a monolithic standing-wave lithium-niobate optical 
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parametric oscillator (OPA) 13•24, pumped by a frequency-doubled 
continuous-wave Nd: YAG laser (1,064 nm). The infrared laser 
wave is filtered by a high-finesse mode-cleaning cavity, which 
transmits 75% of the laser power. Its narrow linewidth of 170 kHz 
suppresses the high-frequency technical noise of the laser, yielding a 
shot-noise-limited local oscillator for light powers in the milliwatt 
range at frequencies ;:,,1 MHz (ref. 13). The pump wave 2w (power 
-20-30 mW) for the OPA is generated by resonant second 
harmonic generation. 

In the past OPAs have been frequently used as sources of non­
classical light10•13•25- 28• Operated below threshold, the OPA is a 
source of squeezed vacuum. We studied the field's spectral comp­
nents around a frequency offset by D./21r = 1.5 or 2.5 MHz from the 
optical frequency w, to·avoid low-frequency laser excess noise. To 
generate bright light (that is, with non-vanishing average electric 
field at the frequencies w ± D.), we employ the OPA in a dual port 
configuration28 • A very weak wave split off the main laser beam is 
phase-modulated by an electro-optic modulator (EOM) at the 
frequency D. (modulation index {3 « 1) and injected into the 

Figure 2 Noise traces in i0 (1) (left), quadrature distributions P,Q<,) (centre), and four states, whereas for the squeezed vacuum (belonging to a different set of 

reconstructed Wigner functions (right) of generated quantum states. From the measurements) a 3.- interval is shown. The quadrature distributions (centre) can 

top: Coherent state, phase-squeezed state, state squeezed in the <f, = 48' -quad- be interpreted as the time evolution of wave packets (position probability den-

ratu re, amplitude-squeezed state, squeezed vacuum state. The noise traces as a sities) during one oscillation period. For the reconstruction of the quantum states 

function of time show the electric fields' oscillation in a 4.- interval for the upper a .- interval suffices. 
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OPA through its high reflector (HR) port. The carrier frequency w is 
kept on-resonance with the cavity and the two 'bright' sidebands 
w ± f2 are well within the cavity bandwidth Tl21r = 17 MHz 
(HWHM). In the semiclassical picture we may write the Fourier 
components at the frequency f2' of the field's quadratures emitted 
from the output mirror as X(f2') = E0(f2') + {3Eo(o(f2' - f2) -
o(f2' +f2)) + Xn(.Q'), Y(.Q') = Y,,(f2'), whereoisthe Diracdelta­
function, Ec; is the amplitude of the emitted wave and Xm Yn are the 
broad-band quantum fluctuations 29• Due to the very small ratio of 
HR transmission (<0.1%) to output mirror transmission (2.1%), 
the transmitted sidebands and their quantum fluctuations are 
strongly attenuated. The quantum fluctuations of the signal wave 
inside the resonator originate essentially from the vacuum fluctua­
tions entering through the output coupler. The injected seed-wave 
amplitude as well as the fluctuations are modified inside the 
resonator by the interaction with the 2w pump wave: the quadrature 
fluctuations out-of-phase with the pump are deamplified 
(squeezed), the in-phase quadrature fluctuations are amplified. 
Similarly, the seed wave is deamplified if it is out of phase, and 
amplified if it is in phase, with the pump wave. As the relative phase 
ct, between seed wave and pump wave is controlled manually by a 
mirror attached to a piezoelectric actuator, deamplified amplitude-
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squeezed light, amplified phase-squeezed light and light squeezed in 
an arbitrary quadrature are easily generated. The coherent excita­
tion of the sidebands is controlled coarsely by changing the power of 
the seed wave ( the photon flux of the carrier Ec; at the OPA output 
port is about 6 X 108 photons s - i = 120 pW), fine control is 
achieved by varying the modulation strength of the EOM. By 
turning the modulation off, we obtain squeezed vacuum, which 
has been described in detail previously13•14. By blocking the OPA 
pump wave, we are left with coherent states. 

The signal is analysed at a homodyne detector, whose output 
current i _ is mixed with an electrical local oscillator -sin(f2 t + </J) 
phase-locked to the modulation frequency, and then low-pass 
filtered with 100 kHz bandwidth. We fix the phase of the electric 
local oscillator to cos </J = 1, so that the resulting current is; 

in(O, t) =(2(3E0 + X,,(.Q, t)-X,,(-.Q, t))sin0 
(2) 

+ (Y,,(f2, t)- (Y,,(-.Q, t))cos0 

where X,,(f2, t), Yn(.Q, t) are the noise fluctuations in a 100-kHz­
wide band centred at f2. By variation of the optical local-oscillator 
phase 0, any quadrature of the field difference at w + f2 and w - fl 

can be accessed. 
The in data (about 500,000 points per trace) are taken with a 

high-speed 12 bit analogue-to-digital converter, while the local­
oscillator phase is swept by 21r in approximately 200 ms. Time traces 
of in for coherent and squeezed states are shown in the left column 
of Fig. 2. They can be considered to be the experimental counterpart 
of the theoretical depictions of squeezed states introduced by 
Caves30• 

The traces are subdivided into 128 equal-duration intervals 
within which the local-oscillator phase is approximately constant. 
These individual time traces may be regarded as the quantum 
trajectories of a particular quadrature ~- The specific behaviour 
of the trajectory is unpredictable; its statistics however contain the 
information necessary and sufficient to calculate the quantum state 
properties. Experimentally, the statistics are obtained by forming 
histograms of 256 amplitude bins for each quantum trajectory and 
normalizing the absolute bin width using as reference the distribu­
tion of a vacuum state. The middle column of Fig. 2 shows selected 
measured quadrature probability distributions for the generated 
states. All distributions are found to be gaussians. This is expected, 
as the states are generated from a coherent state with a gaussian 
Wigner function via a second-order nonlinear interaction. 

The variances of these distributions determine the amount of 
squeezing and anti-squeezing. A maximum of - 6 ± 0.25 dB 
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Figure 3 Photon number distributions for the states of Fig. 2. Solid points refer to 

experimental data, histograms to theoretical expectations. Except for the 

poissonian distribution of the coherent state, all distributions are super­

poissonian ((n) < Var(n)). The odd/even oscillations in the photon number 

distribution of the squeezed vacuum state are a consequence of the pair-wise 

generation of photons. They can also be explained by quantum interference 

effects in phase space37• 
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Figure 4 Reconstructed density matrices (absolute values) of three states w ith 

approximately equal amplitude: a, sub-poissonian amplitude-squeezed state with 

(n ) = 8.9, Var(n) = 4.9; b, coherent state with (n) = 8.4, Var(n) = 8.6; c, phase­

squeezed state with (n) = 8.4, Var(n) = 24.6. The bump aroundn = 17,m = 12 for 

the amplitude-squeezed state is a characteristic feature, where the matrix 

elements change sign. 
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(= 0.25) for the squeezed vacuum mode was detected. For the 
bright squeezed light only a maximum amount of squeezing of 
- 5.2 dB (= 0.3) was reached, due to slight phase instabilities 
of the seed wave. The anti-squeezing amounted to 12-14 dB 
( = 15.8-26.9) for the states presented. These values agree with 
the results of simultaneous measurements with a spectrum analyser. 

Phase-space distributions of squeezed states 
Applying the inverse Radon transform yields the Wigner distribu­
tions shown in the right column of Fig. 2. They agree well with the 
theoretical expression; 

W( )--1_ (-(x-e0 cos</>)2 _ (y- eo sinq:,)2) 
x, y - 1rab exp a2 l:J (3) 

where x = ~ cos q:, + x~,2 sin q:,, y = - ~ sin q:, + x~,2 cos q:, are the 
phase-space coordinates used in standard textbooks, a and b are 
respectively the minimum and maximum standard deviation of the 
quadrature fluctuations, and e0 = 2{3E0 is the state's amplitude. The 
commonly used depiction of squeezed states as ellipses in phase 
space, with half-axes a and b, corresponds to a horizontal section 
through the Wigner function. The area of the ellipse is a measure of 
the purity of the state, as Trp2 = 21r ff W(x, y)2dxdy equals 1/ab for 
squeezed states (here Tr indicates the trace of a matrix) . Trp2 
amounted to 1 for the (pure) coherent state and 0.41-0.46 for the 
squeezed states of Fig. 2. Their significantly mixed character arises 
mostly from loss experienced in the cavity of the OPA (escape 
efficiency 0.88) and during propagation and detection (overall 
detection effic;iency 7/ = 0.94). 

The quantum efficiency of the detection system is a critical issue 
in the field of QSR31 • The loss suffered by the quantum state in 
propagation and detection is equivalent to a convolution of its 
original Wigner function with a gaussian. Thus for a given detection 
efficiency 7/ only the s-parametrized phase-space distribution func­
tion W(x, y, s) (ref. 18) withs < 1 - (1/ri), can be reconstructed32• In 
a strict sense the Wigner function itself W(x, y) = W(x, y, s = 0) is 
not accessible by tomographical methods, but with our high 
detection efficiency our reconstructions yield phase-space distributions 
with s = - 0.064, which is very close to the Wigner function. An 
additional smoothing, also a convolution with a gaussian, occurs 
within the reconstruction algorithm in a filtering procedure with a 
quadratic regularization method33• However, its contribution to the 
total s-parameter can be made less than - 0.01. 

Figure 5 Reconstructed density matrix of the squeezed vacuum state of Fig. 2: 

along the diagonal and the near off-diagonals the elements alternate in 

magnitude, which can be explained by quantum interference in phase space37. 

Odd off-diagonals are zero, owing to the symmetry of the state's distribution in 

phase space, W (X,y) = W( - x , - y ). 
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Density matrices of squeezed states 
An alternative view of the generated states is provided by their 
density matrices p in the Fock basis, because here the state is 
described in terms of energy eigenstates, in contrast to the descrip­
tion by field components discussed in the previous paragraph. The 
diagonal elements of the density matrix Pnn = p(n), are the occupa­
tion probabilities of the number states I n). Here n is to be 
interpreted as the photon flux per unit bandwidth; p(n) is the 
probability that an ideal photon counter would register in 1 second 
n photons in a I-Hz-wide spectral band. A state with (n) photons 
corresponds to a photon flux of (n) X 105 photons s- 1 = 
(n)0.02 pW in the 100-kHz-wide spectral bands centred at w ± D. 

Figure 3 shows the photon number distributions for the states 
from Fig. 2. As can be seen, a simple rotation of the squeezing ellipse 
(with respect to the coherent excitation in phase space) changes the 
photon distribution function substantially. Apart from the poisso­
nian distribution of the coherent state, all distributions shown are 
strongly super-poissonian, that is, the photon number variance 
Var(n) exceeds its mean (n). For amplitude-squeezed light this 
seems counterintuitive, as reduced amplitude noise should imply 
reduced intensity (photon number) noise. An explanation is given 
by the expressions for photon number average and variance for 
general (non-minimum-uncertainty) squeezed states34: 

1 1 
(n) = -(a2 + b2 - 2) + - e~ 

4 2 
(4) 

l4 b4 122 2 b2·2 Var(n) = -(a + - 2) +-e0(a cos <f, + sm <f,) 
8 2 

For states with a large amplitude eo, the variance of the amplitude 
quadrature a2 cos2 <f, + b2 sin2<f, indeed determines the characteris­
tics of the photon number distribution. However, in the regime of 
low amplitudes, when coherent excitation and quantum noise are 
comparable in size, the first terms in equation (4), figuratively the 
photon content of the quadrature fluctuations, play a significant 
role. We adjusted the experimental parameters to a2 = 0.43, 
b2 = 3.3 (reduced squeezing and anti-squeezing) and e0 = 4.12 to 
obtain amplitude-squeezed sub-poissonian light. Its Mandel-Q­
parameter (Var(n) - (n))/(n) = - 0.45 is to our knowledge the 
lowest value achieved so far using optical nonlinear frequency­
conversion techniques35• 

Figure 4 shows the density matrix up to n, m = 25 for the sub­
poissonian amplitude-squeezed state in comparison with those of a 
coherent and super-poissonian phase-squeezed state with approxi­
mately equal average photon numbers. Owing to their reflection 
symmetry in phase space, it is always possible to choose a basis in 
which the density matrices of these three states in the Fock 
representation are real. For the coherent state and the phase­
squeezed state all elements Pnm are positive, for the amplitude­
squeezed state the near-diagonals show oscillations. The density 
matrix of the squeezed vacuum, Fig. 5, exhibits the most interesting 
structure. Its typical 'chess-board' pattern is due to the down­
conversion process occurring in the OPA, where photons are created 
in pairs. The deviations of the experimental density matrices 
presented here from the theoretical ones are of the order of 0.01 
per element. Besides statistical effects, this is partly due to 
instabilities of the relative phases 0 and <f, and to fluctuations in 
the pump power. 

We have carried out a complete experimental characterization of 
the whole family of squeezed states. Average photon number and 
orientation of the states in phase space were accurately controlled by 
macroscopic experimental parameters. In particular, this flexibility 
allowed us to generate amplitude-squeezed light with either sub- or 
super-poissonian photon statistics. The quantum state reconstruc­
tions were performed in quasi real-time, with a data acquisition 
time of 200 ms and an analysing time of -20 s. Our results are in 
very good agreement with theory. Beyond the reconstructions 
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presented here, we have investigated the Pegg-Barnett phase dis­
tribution and incoherent superpositions of coherent states36 . 

Quantum state reconstruction by homodyne tomography has 
been developed into a reliable and accurate tool. We believe that this 
powerful method will stimulate experimental efforts to generate 
new quantum states with non-gaussian statistics using higher-order 
nonlinear processes. D 
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